AI Market Research Customer Case Studies

John Avatar

·

·

Artificial Intelligence (AI) has revolutionized various aspects of business operations, and market research is no exception. By leveraging AI, companies can gather real-time insights, predict trends, and make data-driven decisions with unprecedented accuracy and speed. This article delves into several customer case studies that highlight the transformative power of AI in market research.

1. Starbucks: Personalized Customer Experiences with Deep Brew AI

Objective:
Starbucks aimed to deliver highly personalized experiences to its customers to increase engagement, drive sales, and foster long-term loyalty.

Solution:
Starbucks implemented the Deep Brew AI engine, an advanced platform that analyzes extensive customer data collected from the Starbucks app and loyalty program. This AI engine utilized machine learning algorithms to interpret data, uncover patterns, and generate insights into customer behavior. Based on these insights, Deep Brew crafted personalized marketing messages and product recommendations tailored to each customer’s unique preferences and purchase history. This included suggesting beverages and food items, promoting special offers, and providing timely notifications about new products or local store events.

Results:
The implementation of Deep Brew AI significantly enhanced customer engagement and satisfaction. By delivering personalized content, Starbucks was able to foster a deeper connection with its customers, leading to increased sales and long-term loyalty.

2. Domino’s: Voice Ordering with Dom Assistant

Objective:
Domino’s sought to innovate its ordering and delivery processes to enhance customer satisfaction and streamline operations.

Solution:
Domino’s introduced voice ordering through its virtual assistant, Dom, enabling customers to place orders using voice commands on their mobile devices and smart home systems. In 2015, the company further expanded this service through the launching of AnyWare, allowing customers to order pizza via Siri, Amazon Echo, and other voice-enabled devices.

Results:
Voice ordering not only elevated the customer experience by simplifying the ordering process but also optimized operational efficiency. The initiative reflected a modern, customer-centric approach, aligning with contemporary trends of voice search and commerce. Domino’s effectively catered to the convenience and preferences of its target audience, distinguishing itself in a competitive market.

3. Bayer: Predictive Marketing with AI

Objective:
Bayer’s Australia team wanted to predict market trends and get in front of those trends to reach the right consumer with the right content at the right time.

Solution:
The team combined Google trends data with weather and climate information and fed that into a forecasting model built with Google Cloud machine learning technology. The model predicted when a 50% surge in flu cases would happen across the country. This knowledge allowed the marketing team to adapt their strategy to get the most effective and engaging copy in front of the right people at the right time.

Results:
The strategy led to an 85% increase in click-through rates year over year, a 33% reduction in cost per click, and a 2.6x increase in website traffic over the long run. This proactive approach to marketing significantly improved Bayer’s engagement and efficiency.

4. Sephora: AI-Powered Beauty Advisor

Objective:
Sephora aimed to provide highly personalized beauty product recommendations to enhance customer satisfaction and boost sales.

Solution:
Sephora launched the Virtual Artist, an AI-powered beauty advisor that utilized facial recognition and augmented reality (AR) technologies. This tool enabled customers to virtually try on makeup products, receive personalized product recommendations, and simulate different makeup looks in real time. The Virtual Artist analyzed customers’ facial features and skin tones to suggest suitable products, creating a tailored and immersive shopping experience.

Results:
The Virtual Artist significantly enhanced the customer shopping experience, leading to increased customer satisfaction and sales. By leveraging AI, Sephora was able to provide a unique and engaging service that set it apart from competitors.

5. Epsilon Abacus: Improved List Accuracy with Machine Learning

Objective:
Epsilon Abacus wanted to use machine learning to improve its list accuracy and stay ahead in a rapidly evolving marketing niche.

Solution:
The company developed a machine learning system called Accelerate, which performed heavy data crunching faster. The model removed inaccurate targets, added relevant consumers, and delivered improved lists to the team’s data scientists, who then offered it to clients.

Results:
Epsilon Abacus improved list response rates by 3%-5%, increased direct mail response rate for one large client by 1.10%, and found, on average, 15,000 highly relevant customers for every marketing campaign. This improvement in list accuracy significantly enhanced the effectiveness of their marketing campaigns.

6. Classic Home: AI-Enhanced Operations

Objective:
Classic Home aimed to leverage AI to redefine customer interaction and drive revenue growth.

Solution:
The company used AI to analyze customer behavior patterns and guide product selection and sales strategies. This approach included better product recommendations, abandoned cart alerts, and more.

Results:
The strategic foray into AI-enhanced operations led to a steady uptick in incremental revenue. By making data-driven decisions, Classic Home was able to turn the theoretical benefits of technology into concrete, measurable returns.

7. Unilever: AI for Content Creation

Objective:
Unilever sought to enhance its content creation processes using AI.

Solution:
Unilever implemented several AI applications, including a sentiment analysis tool that cut agents’ time responding to emails by 90% and an app that writes Amazon product descriptions with the proper brand voice and tone. These tools allowed Unilever to streamline its content creation processes and improve efficiency.

Results:
The AI tools significantly reduced the time and resources required for content creation, allowing Unilever to focus on improving content quality and raising the bar for their campaigns.

8. Accenture: Optimizing Media Spend with AI

Objective:
A leading US retailer partnered with Accenture to improve marketing spend and optimize media allocation.

Solution:
Accenture designed an AI-powered solution that enabled faster and better data collection and more precise modeling to optimize media spend. The solution included speeding up the existing data flow process, aggregating and processing data from media channels, sales, and spend, and introducing machine learning to identify interdependencies between channels.

Results:
The solution shortened the lag between the measurement period and performance insights from five months to five weeks, opening up a 10.5-month planning runway for the same period the following year. The team estimates that $300 million in media buying opportunities and value creation was unlocked by implementing the new tool.

9. Netflix: Personalized Recommendations with AI

Objective:
Netflix aimed to enhance user engagement by providing personalized content recommendations.

Solution:
Netflix implemented a machine learning system that analyzes user data to recommend movies and TV shows based on individual preferences. This system continuously learns from user interactions to improve the accuracy of its recommendations.

Results:
Approximately three-fourths of the movies watched on Netflix are recommended by the platform’s machine learning system. This personalized approach has significantly enhanced user engagement and satisfaction, making Netflix a leader in the streaming industry.

10. Coca-Cola: AI for Creative Content Generation

Objective:
Coca-Cola sought to leverage AI to enhance its creative content generation processes.

Solution:
Coca-Cola worked with Bain & Company to create an AI platform that combines the text-based content generation capabilities of GPT-4 with those of DALL-E, which produces images based on text input. This platform allows creators to generate artwork using creative assets from Coca-Cola’s archives, including logos, symbols, and characters.

Results:
The AI platform enabled Coca-Cola to merge multiple marketing objectives into one brilliant campaign, significantly enhancing the efficiency and creativity of their content generation processes.

Conclusion

These case studies underscore the transformative power of AI in market research and marketing. By leveraging AI, companies can gather real-time insights, predict trends, and make data-driven decisions with unprecedented accuracy and speed. From personalized customer experiences to optimized media spend, AI is revolutionizing the way businesses approach market research and marketing, driving significant improvements in engagement, efficiency, and revenue. As AI technology continues to evolve, its impact on market research and marketing will only grow, offering businesses an unprecedented opportunity to revolutionize their strategies and achieve tangible results.

Leave a Reply

Your email address will not be published. Required fields are marked *